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Abstract—Advances in quantum annealing technology make
it possible to obtain high quality approximate solutions of
important NP-hard problems. With the newer generations of
the D-Wave annealer, more advanced features are available
which allow the user to have greater control of the anneal
process. In this contribution, we study how such features can
help in improving the quality of the solutions returned by the
annealer. Specifically, we focus on two of these features: reverse
annealing and h-gain. Reverse annealing (RA) was designed to
allow refining a known solution by backward annealing from a
classical state representing the solution to a mid-anneal point
where a transverse field is present, followed by an ordinary
forward anneal, which is hoped to improve on the previous
solution. The h-gain (HG) feature stands for time-dependent gain
in Hamiltonian linear (h) biases and was originally developed to
help study freezeout times and phase transitions in spin glasses.
Here we apply HG to bias the quantum state in the beginning
of the annealing process towards the known solution as in the
RA case, but using a different apparatus. We also investigate a
hybrid reverse annealing/h-gain schedule, which has a backward
phase resembling an RA step and whose forward phase uses the
HG idea. To optimize the parameters of the schedules, we employ
a Bayesian optimization framework. We test all techniques on a
variety of input problems including the weighted Maximum Cut
problem and the weighted Maximum Clique problem. Our results
show that each technique may dominate the others depending
on the input instance, and that the HG technique is a viable
alternative to RA for some problems.

Index Terms—quantum annealing, D-Wave, anneal schedule,
h-gain, reverse annealing, Bayesian optimization,

I. INTRODUCTION

Commercial quantum computers from D-Wave Systems
Inc. [1] make it possible to obtain approximate solutions
of very high quality of many important NP-hard problems,
such as the Maximum Clique problem, Vertex Cover, Graph
Partitioning, and Graph Coloring. Specifically, such devices
allow one to use a physical process called quantum annealing
(QA) to minimize quadratic unconstrained binary optimization
(QUBO) or Ising functions in n ∈ N variables, defined by

Q(x1, . . . , xn) =

n∑
i=1

hixi +
∑
i<j

Jijxixj . (1)

In eq. (1), the variables xi are unknown, whereas the linear
weights hi ∈ R and the quadratic couplers Jij ∈ R for
i, j ∈ {1, . . . , n} are specified by the user to define the

problem under consideration. We call eq. (1) a QUBO problem
if xi ∈ {0, 1} and an Ising problem if xi ∈ {−1,+1}. Both
the QUBO and Ising formulations are equivalent [2]. As shown
in [3], many important NP-hard problems can be formulated
as a minimization problem of the form of eq. (1).

Since the first generation of D-Wave annealers (called D-
Wave One) was introduced in 2009, more and more advanced
features have been added to newer D-Wave generations,
allowing the user greater control over the anneal process.
Those features comprise spin reversal [4], customized anneal
schedules or anneal offsets for individual qubits [5]. One of
the two latest additions include reverse annealing schedules,
and so-called time-dependent gain in linear biases, abbreviated
as h-gain.

In this work, we study how the latter two techniques,
reverse annealing (RA) and h-gain biasing (HG), can be used
to improve the quality of a solution returned by D-Wave.
Whereas improving a known (suboptimal) solution is the
motivation behind RA, both methods actually allow one to
plant an approximate solution, obtained either classically or
with a quantum technique, which is sought to be improved
during the anneal.

In RA, the annealer performs a backward anneal starting
from a classical state representing the initial (planted) solution
to a mid-point where a transverse field is present, followed by
an ordinary forward anneal. If the initial solution is close to
the global minimum, it is hoped that entering the quantum
phase via the backward anneal will allow the annealer to
transition to a better minimum, thereby improving upon the
known solution.

The HG feature was originally designed to study freeze-out
points [6] and phase transitions in spin glasses [7], and allows
one to weigh the linear term in eq. (1) in a time-dependent
way. In this contribution, we show that we can use the HG
feature to plant an initial solution as in the RA, but using only
forward annealing. Assuming the Ising function from eq. (1)
has no linear term, we add a new, suitable linear term that
works as a bias towards the known initial solution. The HG
feature allows us to put maximal weight on the linear term
at the start of the anneal. Over the course of the anneal, we
can decrease the HG strength to zero, thereby allowing the
annealer to explore different solutions in the neighborhood



of the planted one. The precise methodology is introduced
in Section III. We also consider the application of HG to
problems whose Ising formulations do have linear terms, and
investigate a type of hybrid schedule that combines both RA
and HG, specifically, that has a backward phase resembling
an RA step and a forward phase based on the HG idea.

The implementation of the methodologies investigated in
this contribution for encoding an initial solution depend on a
variety of tuning parameters. In particular, for RA, we need
to choose the total anneal time and the schedule parameters.
Likewise, HG depends on the total anneal time, the schedule
parameters, and up to two scaling constants (depending on
the structure of the Ising model in eq. (1)), which we use
to bias the solution towards the initial state. To tune those
parameters, we employ a Bayesian optimization framework
[8], and we give details on how this optimization is being
performed. Moreover, we present the best anneal schedules
we obtained in this paper as a guidance on how to use RA
and HG to encode initial solutions.

The article is structured as follows. After a brief literature
review in Section II, Section III introduces the two techniques
we investigate to encode an initial solution prior to the anneal
process. Precisely, we describe RA in Section III-A, and we
give details on how to transform an input Ising of the form of
eq. (1) such that it encodes an initial state using the HG feature
in Section III-B. Experimental results are given in Section IV
for the weighted Maximum Cut problem (Section IV-A) and
the weighted Maximum Clique problem (Section IV-B). The
article concludes with a discussion in Section V.

II. PREVIOUS WORK

Whereas the HG feature remains relatively unexplored, RA
has been studied in greater depth by several authors. The idea
of RA was first introduced in the paper of [9] under the name
of sombrero adiabatic quantum computation and tested on 3-
SAT instances. The authors observed that the performance
of their algorithm was largely determined by the Hamming
distance between the planted initial guess and the optimal
solution.

A variety of techniques to perform local searches in the
neighborhood of specified states via repeated calls of a quan-
tum device is examined in [10]. However, the author only
assumes that a quantum annealer can be called with an initial
state and does not explicitly consider reverse annealing.

In [11], the authors introduce a theoretical framework to
show under which conditions RA can lead to improvements
over QA for the fully connected p-spin model. However,
they remark that their results may not apply to experimental
setups where RA is performed diabatically and in a thermal
environment.

In [12] the authors analyze, using direct numerical integra-
tion of the time-dependent Schrödinger equation, two types
of RA, adiabatic RA, which is a forward annealing similar
to the HG version studied here, and iterative RA as used in
the D-Wave annealer. They show that, in theory, adiabatic RA
provides a speed-up over QA for solving the mean-field-type

p-spin model, but conclude that iterative RA as used by D-
Wave does not provide this advantage in theory. As in [11],
the authors remark that D-Wave is not a closed system, and
thus theoretical results may not apply.

An empirical study on portfolio optimization is presented in
[13]. The authors observe a considerable speedup of RA over
QA when seeded with heuristic solutions.

Another empirical study of RA in the context of 3-spin
models is presented in [14]. The authors show that the open
system dynamics, in connection with pausing, allow RA to
converge to the ground state with a higher success probability
than observed for purely closed system RA. The authors
conclude that it is the open system dynamics that makes RA
work in machines such as D-Wave.

III. METHODS

This section describes the techniques we use to encode
an initial solution, both via the D-Wave’s RA feature (Sec-
tion III-A) and with the help of suitable linear terms in
connection with the HG feature (Sections III-B and III-C).
Section III-D describes our hybrid technique of RA+HG.
Section III-E briefly describes the Bayesian optimization
framework we use to optimize parameters and schedules.

A. Anneal paths based on reverse annealing

In a standard forward anneal (FA), all qubits are prepared
in an equal superposition of all states, as determined by
the transverse field portion of the system’s Hamiltonian.
During annealing, the amplitude of the transverse field is
being decreased towards zero, while the Hamiltonian is slowly
transformed into a Hamiltonian corresponding to the Ising
problem being minimized. Specifically, the evolution of the
D-Wave’s quantum system is described by the following time-
dependent Hamiltonian

H(s) = −A(s)
2

( n∑
i=1

σ̂(i)
x

)
+
B(s)

2

( n∑
i=1

hiσ̂
(i)
z +

∑
i≤j

Jij σ̂
(i)
z σ̂(j)

z

)
,

(2)
where the first term having the prefactor −A(s)/2 is the
transverse field and the term following the prefactor B(s)/2 is
the Hamiltonian corresponding to the Ising model of eq. (1) to
be implemented on the annealer. The specific functions A(s)
and B(s) used for the D-Wave 2000Q machine at Los Alamos
are shown on Figure 1 (left). These functions are indexed by
a parameter s ∈ [0, 1] called the anneal fraction, which itself
is a function s(t) of the time. In the case of the FA, it is given
as s(t) = t/T , where T is the full anneal time.

In contrast to FA, reverse annealing (RA) starts with a
planted classical solution that is hoped to be much closer
in quality to an optimal one than a random starting point.
Then, a two-stage process is initiated, during which quantum
fluctuations are first increased by reducing the anneal fraction
from s = 1 to a value sinv ∈ (0, 1) at time tainv (the red curve
in Figure 1, right). After the turning point is reached, and after
an optional pause until time tbinv, the anneal follows again the
path of a standard forward anneal from sinv up to s = 1 at full
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Fig. 1. Left: Functions A(s) and B(s) controlling the anneal process, where s ∈ [0, 1] is the annealing fraction. Right: Progression of the anneal fraction s
for standard forward and reverse annealing with pause as a function of time t ∈ [0, 500] ms. Figure adapted from [14].

anneal time T . Careful choices of the turning point and the
initial state can lead to improvements in the solution compared
to a forward anneal, see [15], [16].

B. Anneal paths based on the HG feature

The feature of a time-dependent gain in Hamiltonian linear
biases allows the user to have more control of the anneal
process by biasing linear terms of an Ising model with the
help of a time-dependent function g(t) as follows:

HHG(s) =−
A(s)

2

( n∑
i=1

σ̂(i)
x

)
+
B(s)

2

( n∑
i=1

g(t)hiσ̂
(i)
z +

∑
i>j

Jij σ̂
(i)
z σ̂(j)

z

)
, (3)

see [7]. Compared to eq. (2), we see that the linear terms of
the Ising model in eq. (3) are weighted with a function g(t),
specified by the user, which controls the time-dependent gain
for the linear terms. In our implementation, we initialize the
function with g(0) ∈ [0, 5] (5 being the largest value allowed
for D-Wave 2000Q) and decrease it to g(T ) = 0 using up to
20 points on the schedule. The specification of the HG feature
is actually more general than the way we use it in this work.
For instance, the function g(t) may actually return values in
[−5, 5], it does not need to be monotonic, there is a (machine-
dependent) bound of 500 for the slope between changes in
the schedule, and a (machine-dependent) upper bound on the
number of points determining the schedule [17].

In this paper, we employ the HG feature to encode an initial
solution at the start of the anneal process. Assume we are given
an Ising problem of the type of eq. (1) with no linear term,
i.e., hi = 0 for all i. The idea lays in the observation that,
for a fixed initial value x(0) = (x0

1, . . . , x
0
n) ∈ {−1,+1}n,

the minimum of the special Ising function containing only a

linear term,

h(x) =

n∑
i=1

(−x0
i )xi (4)

for x = (x1, . . . , xn), is precisely −n, and it occurs at
x = x(0). Hence we can define hi = −x0

i for i = 1, . . . , n
and use a HG annealing schedule of the type of eq. (3). By
putting a large weight on the linear terms at the start of the
anneal using the function g(t), we bias the annealing solution
towards our planted solution x(0). Over the course of the
anneal, the HG bias (the function g(t) in eq. (3)) is decreased
towards zero, thus allowing the anneal process to move away
from the planted solution and to explore alternative ones in its
neighborhood.

However, in order for this idea to work, the original Ising
model may not have a linear term, so we can create our
own linear term to encode the initial solution. For instance,
Maximum Cut, Graph Partitioning, and Number Partitioning
are such NP-hard problems without linear terms [3]. Most
Ising formulations of NP-hard problems, however, seem to
have linear terms. Next we will show that even for such
problems the HG approach can be applicable.

C. Using HG for Ising problems containing linear terms
For problems whose Ising formulations do have linear

terms, we apply the following transformation to eliminate
them. First, we homogenize the polynomial in eq. (1) by con-
verting the linear term into a quadratic one. This is achieved
by introducing a new variable z ∈ {−1,+1}, which we call
a slack variable. The slack variable z is multiplied with each
linear term, thus transforming eq. (1) into

Q′(x, z) =

n∑
i=1

hixiz +
∑
i<j

Jijxixj . (5)

Note that Q can be recovered from Q′ by setting z = 1. Then
we can apply the method as discussed in Section III-B. After
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the end of the annealing process, we ignore all solutions with
z = −1. We can guide the anneal process to favor solutions
with z = 1 by using an appropriate HG bias (initial solution).

D. Our hybrid method combining RA+HG

The ideas of RA and HG can actually be combined in a sin-
gle D-Wave call. To be precise, given an initial solution x(0) to
be encoded, we first apply the methodology of Sections III-B
and III-C to arrive at a new Ising model encoding x(0). We
then solve the new Ising model using an RA schedule, which
specifies the anneal fraction s as a function of time, combined
with an HG schedule, which specifies the gain g(t) as a
function of time.

If the HG Hamiltonian computed in Sections III-B and III-C
requires a slack variable z, we also need to supply an initial
state for z when running RA. In order to reinforce z = 1, we
indeed set z = 1 in the RA initial state additionally to x(0).

E. Parameter setting

For the effective implementation of the RA and HG meth-
ods, we need to determine appropriate values for a set of
parameters, some optional, others required.

For HG, optional parameters are the coefficients hi from
eq. (3), for which we have so far suggested only their sign
in eq. (4). While choosing individual weights for each hi
will result in highest accuracy, it is also the most difficult
to accomplish and beyond the scope of this paper. Instead, we
use a single coefficient α1 for i = 1, . . . , n and, in the case
when we need to homogenize the input Ising model, another
coefficient α2 for the new variable z.

Combining the above, we encode an initial state using the
Ising model

Qfinal(x, z) = α1

( n∑
i=1

(−x0
i )xi

)
− α2z +Q′(x, z), (6)

which is a function of x1, . . . , xn and z. The two scaling
constants α1 and α2 allow us to control the strength with
which the bias towards the initial solution and the condition
that z = 1 are enforced. If the Ising model under consideration
in eq. (1) does not have a linear term, no new variable z is
needed and thus α2 = 0 in eq. (6).

Parameters that are required for both RA and HG are the
schedule parameters. For RA, we need the values tainv, tbinv, and
sinv, see Figure 1, plus the total anneal time T and for HG
we need the function g(t) given as a polygonal line subject
to D-Wave’s restrictions on magnitude, angles, and number of
points. While there is some previous work that can be used
as guidance for setting the schedule, in the case of HG there
is no such previous work. Hence, we apply an optimization
procedure for choosing the HG parameters and, in order to
make a fair comparison between RA and HG, we use the
same method for choosing the RA parameters.

We employ the following procedure for parameter setting.
The tuning is done separately for the two problems that we
study in more detail in the experiments of Section IV, the
Maximum Cut and the Maximum Clique problems, as follows:

1) We first fix the anneal time T , and then the annealing
schedule for RA. After having determined T , we fix the
starting point (t = 0, s = 1) and the end point (t =
T, s = 1), see Figure 1 (right). As in Figure 1 (right),
we decrease the anneal fraction s to a point (tainv, sinv).
We then allow for a pause, meaning we also allow a
point (tbinv, sinv) at the same sinv. All in all, we need to
determine for RA four parameters: T, tainv, t

b
inv, and sinv.

2) Similarly, for HG, we first fix T and then the schedule’s
end points, starting at (0, 5) and ending at (T, 0). We
allow for one point in-between, (h, t), where h ∈ [0, 5]
and t ∈ (0, 1). Together, three parameters are required
for HG, that is, T, h, t. Note that such a shape for an
HG schedule is by no means optimal, but we want to
keep the number of parameters smaller so we can have a
more manageable search space. But before determining
the schedule parameters, we first determine the best
scaling factors α1 and α2 in eq. (6). If the Ising model
under consideration in eq. (1) only has quadratic terms,
homogenizing the polynomial is not necessary and we
thus only need to find α1 in the Hamiltonian of eq. (6).
Otherwise, both α1 and α2 are determined.

3) For the hybrid technique of RA+HG, after having
determined the scaling constants α1 and α2 and the
total anneal time T , we are left with five parameters
determining the schedules: tainv, t

b
inv, and sinv for RA, and

h, t for HG.
For optimizing the parameters, we employ the Bayesian

optimization tool of [18]. Bayesian optimization [8], [19], [20],
[21] is a sequential optimization strategy to find the global
optimum of a smooth function without the need for derivatives.
Briefly, a uniform prior is put over the search space on which
the function under investigation is defined. After querying
a few first function evaluations, a posterior distribution is
calculated which incorporates the obtained knowledge of the
function evaluations (the data). Importantly, the posterior al-
lows one to quantify the uncertainty in all unexplored areas,
and it simplifies to a point mass at those locations where the
function has been queried (and which are thus known exactly).
Under suitable smoothness assumption on the function being
optimized, the posterior allows to exclude areas which cannot
contain the global optimum, and iteratively refining unexplored
areas will result in a confidence region for the global optimum.
An advantage of Bayesian optimization and the reason we
chose it in this research is the fact that it also works with
functions that are noisy, which is the case when the function
is based on the energy values returned by a quantum annealer.

IV. EXPERIMENTAL ANALYSIS

This section reports on a variety of experiments conducted
to assess the performance of both RA and HG, as well as
the hybrid of RA+HG, for improving a planted solution. The
experiments are divided into two subsections in which we
investigate two important NP-hard problems, the weighted
Maximum Cut problem (Section IV-A) and the weighted
Maximum Clique problem (Section IV-B).

4



The structure of both subsections is identical: we first fix
the scaling constants in eq. (6) for HG before we determine
a suitable anneal duration for applying each of the three
methods. Afterwards, we employ Bayesian optimization to
determine the best anneal schedule, parameterized as described
in Section III-E. Once both the anneal duration and the anneal
schedule are found for each of the RA, HG, and RA+HG
methods, we evaluate all three techniques in terms of either
the cut value (for the Maximum Cut problem) or the clique
weight (for the Maximum Clique problem).

All experiments are carried out on Erdős–Rényi random
graphs [22] with probability/density parameter p, where p ∈
{0.1, 0.2, . . . , 0.9}. Once the Ising model coefficients for the
Maximum Cut or Maximum Clique problem are computed for
each test graph, we embed it with minorminer [23] using a
chain strength value of 2 and the default SAPI settings given
by D-Wave.

Throughout the experiments, we employ the RA feature of
D-Wave with the reinitialize state option being switched on
(the default choice), meaning that D-Wave reinitializes the
planted state before each anneal is performed.

Moreover, we always run the bayes_opt tool of [18]
using the following parameter: the number of points for ran-
dom exploration is set to init_points=100, the number
of iterations for optimization is set to n_iter=200, and the
noise level is set to alpha=0.01. The parameter alpha in-
dicates to the optimizer how noisy the optimization landscape
is. Since D-Wave samples are quite noisy, we observed that
setting alpha to a higher value, such as 0.01, is favorable.
However, we observe that large values of alpha seem to
cause an error in the optimizer, while smaller values lead to
insufficient exploration of the optimization landscape.

A. Weighted Maximum Cut problem

This section focuses on the weighted Maximum Cut prob-
lem, defined as follows. Given an undirected graph G =
(V,E) with edge weights w(e) for each edge e = (u, v)
connecting two vertices u, v ∈ V , we define a cut to be any
partition of V into the disjoint union C1 ∪C2, where C1 ⊆ V
and C2 = V \C1. The set of cut edges, called cutset, is defined
as E = {e = (u, v) ∈ E : u ∈ C1, v ∈ C2} and its weight
is
∑

e∈E w(e). The weighted Maximum Cut problem asks to
find a cutset of maximum weight. The Ising formulation of the
weighted Maximum Cut problem is obtained by modifying the
(unweighted) formulation in [24], resulting in

Qcut(x) =
∑

(i,j)∈E

w((i, j)) · xixj ,

where xi, xj ∈ {−1,+1}. Since the Ising formulation of
the Maximum Cut problem does not have linear terms, no
slack variable z is needed in the Ising formulation in eq. (6).
The scaling constant α1 for HG in eq. (6) is determined in
Section IV-A1.

In order to have a baseline truth for comparing RA,
HG, as well as RA+HG we proceed as follows. We gener-
ate random graphs with 65 vertices, edge probability p ∈
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Fig. 2. Maximum Cut problem. Difference in the maximum cut value to the
baseline as a function of the HG scaling factor α1.

{0.1, 0.2, . . . , 0.9}, and uniformly drawn edge weights in
(−1, 1). After fixing 10 of those graphs for each density
as well as their embeddings on D-Wave, we perform 1000
anneals of duration 1 ms. The best solution among those
anneals is then taken as the baseline. When testing RA, HG
and RA+HG, all values we report are averages over those 10
graphs. Moreover, we generate another set of 10 graphs for
each density to use as a validation set.

1) Setting scaling factors and anneal time: We start by
determining a suitable choice of the scaling factor α1 in
eq. (6) for the Maximum Cut problem using the Bayesian
optimization.

As fitness function for the optimization, we use the im-
provement in the maximum cut over the baseline. Each time
the optimizer issues a call to the fitness function, we supply
the average of 10 problems optimized with either RA, HG,
or RA+HG (depending on which one is optimized) using the
parameter set probed by the Bayesian framework. The fitness
value is then the average maximum cut improvement over the
baseline. We make the fitness function dependent on three
parameters, the scaling factor α1 as well as the parameters
(h, t) determining the HG schedule (see Section III-E). For
this experiment the anneal time is set to 1 ms.

After obtaining the fittest values, we fix the schedule (h, t)
and the anneal time of 1 ms, and cross check the scaling
factor α1 on a linear grid on [0.01, 1] in increments of 0.01.
Results for three different densities are shown in Figure 2,
which displays the difference in the maximum cut value to
the baseline as a function of α1. We observe that the best
choice of α1 is very dependent on the graph density, with e.g.
the best choice for density 0.9 occurring at α1 ≈ 0.3. We will
be selecting the scaling factor depending on the underlying
graph density in the remainder of this section.

Next, we determine a suitable anneal duration for RA,
HG, as well as the hybrid RA+HG. For this, we fix the HG
schedule to the three points [0, 5], [0.5T, 2.5], [T, 0] and the RA
schedule to [0, 1], [0.25T, 0.25], [0.75T, 0.25], [T, 1], where T
is the anneal duration (given in Table I). We note that these
schedules are not optimal. Instead, they merely divide up the
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Fig. 3. Bayesian optimization landscape for the HG schedule for Maximum
Cut, visualized as a heatmap for graph density 0.5 and anneal time 1 ms.
Top shows maximum cut size improvement as a function of g(t) ∈ [0, 5]
(see eq. (3)) on the y-axis, where t is the position in the schedule (x-axis).
Bottom shows the variance of the Gaussian processes used by the Bayesian
optimizer. Small dots indicate the points where the function was evaluated.

variable range in an equidistant fashion. We choose the anneal
fraction to be around 0.25 as suggested in [25].

Table I shows maximum cut results for the smallest and
largest possible anneal times as a function of the graph density.
We observe that an anneal duration of 2000 ms works best for
RA, while a 1 ms anneal is best for HG. The hybrid technique
of RA+HG does not seem to be as affected by the anneal
duration, but since an anneal time of 2000 ms yields slightly
better results, we decide to employ RA+HG in connection with
a 2000 ms anneal in this section.

2) Schedule computation via Bayesian optimization: After
having fixed the anneal duration for all three methods, we
proceed by determining the parameters of the anneal schedule
(see Section III-E) via Bayesian optimization. For each density,
we carry out a single run of the Bayesian optimizer.

Since the schedule of HG has two parameters determining
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Fig. 4. Comparison of RA, HG, and RA+HG with respect to the maximum
cut improvement for the best schedules obtained via Bayesian optimization.

the midpoint in the anneal schedule (see Section III-E), we
can visualize its optimization as a heatmap in Figure 3. In
particular, Figure 3 shows the color-coded improvement in cut
size over the baseline for each possible midpoint in the HG
schedule. As described in Section III-E, this point consists
of a position in the anneal and a value of the HG function
g(t) ∈ [0, 5], see eq. (3).

The figure shows that the best choice of the HG value,
defined as the one yielding the best improvement in maximum
cut difference (red values), roughly decreases with the position
in the anneal. We determine the maximum in this way for
each density p ∈ {0.1, . . . , 0.9}. The schedules for RA (3
parameters) and RA+HG (five parameters) are fitted in a
similar way, one schedule per density p ∈ {0.1, . . . , 0.9}.

3) Comparing RA, HG, and RA+HG: Having determined
best schedule parameters for RA, HG, and RA+HG, we run
again the experiment on 10 new graphs using these schedules.
Figure 4 shows results from this experiment. We observe that
neither technique is uniformly better than the others. RA seems
to be best for low densities, while HG and RA+HG perform
best for high density graphs.

4) Best schedules for RA, HG, and RA+HG: It is interesting
to look at the shape of some of the optimal schedules for RA
and HG found by the Bayesian optimization. Additionally, we
visualize one example of a schedule for RA+HG.

Figure 5 shows the best schedules for RA and HG color
coded by density. For improved readability, we only display
the schedules for p ∈ {0.1, 0.5, 0.9}.

We observe a pattern for the RA schedules in Figure 5
(left). In particular, when optimizing for maximum cut dif-
ference, RA schedules for low densities decrease down to an
anneal fraction of zero, followed by a pause until roughly the
midpoint of the anneal. In contrast, RA schedules for high
densities only decrease to roughly an anneal fraction of 0.5 at
the midpoint of the anneal, followed by a pause until almost
the full anneal time.

Similarly, a pattern can be observed for the HG schedules
in Figure 5 (right). The HG schedules for low densities seem
to have a steeper slope at the start of the anneal, and flatten
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TABLE I
EVALUATION OF RA AND HG, AS WELL AS HYBRID RA+HG, FOR SMALLEST AND LARGEST POSSIBLE ANNEAL TIMES. MAXIMAL CUT DIFFERENCE ON

ERDŐS–RÉNYI GRAPHS OF DENSITY RANGING FROM 0.1 TO 0.9.

anneal [ms] 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
RA 100 0.722 -0.151 2.060 1.974 2.551 1.909 3.425 2.544 0.467
RA 2000 2.412 -0.149 3.653 2.140 3.261 2.859 4.507 3.209 0.610
HG 1 5.173 2.084 3.72 2.632 3.127 2.799 2.876 2.082 0.338
HG 2000 3.963 1.266 2.216 1.421 2.047 1.617 1.705 1.525 0.185
RA+HG 100 3.853 2.832 4.867 3.022 3.478 3.170 4.32 2.726 0.526
RA+HG 2000 4.145 2.540 5.001 2.725 4.222 3.128 4.526 3.113 0.566
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Fig. 5. Maximum Cut problem. Best schedules for RA (left) and HG (right) for three different densities each, optimized for maximum cut difference. Each
line is the best schedule for one density.
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Fig. 6. Illustration of an RA+HG schedule. Best schedule found for the
Maximum Cut problem for p = 0.3.

off afterwards. In contrast, schedules for high densities seem
to be closer to a straight line between the start point (0, 5) and
the end point (1, 0).

An RA+HG anneal can be executed by sending to the D-
Wave solver one RA schedule and one (independent) HG
schedule. But while the RA aspect is easy to comprehend,
the HG one is more difficult to grasp by just looking at the
two component schedules because of the way the RA portion
affects HG. Specifically, if s = RA(t) and g = HG(t)

are the functions determined by the RA and HG schedules,
respectively, then the real gain applied at time t to the linear
biases in eq. (3) is (B(s)/2)HG(t) = B(RA(t))HG(t)/2,
where B(s) is the function from eq. (2). Figure 6 is given to
help visualize the effect of an RA+HG schedule. The RA com-
ponent of the schedule, which has a pause for t ∈ [0.6, 0.89]
at a value for s equal to 0.21, where t is the time normalized
in [0, 1], can be seen as a projection in the t-s plane. The blue,
green, and teal colors indicate the backward anneal, pause, and
forward anneal phases. The HG schedule, which has middle
point at (t, hg) = (0.71, 2.67), can be seen as the lighter-color
projection in the t-hg plane. Finally, the real gain applied to the
linear biases at each time is represented by the darker-colored
portion of the plot. The annotated point shows the value of the
gain (2.67) at the middle point of the HG schedule (at 0.71).
To simplify the plot, function B has been normalized to [0, 1].
We can see that the real gain applied during the pause and
forward phases of the RA schedule stays mostly unchanged.

B. Weighted Maximum Clique problem
We carry out a similar analysis for the weighted Maximum

Clique problem, defined as follows. For any graph G = (V,E),
a clique C is a fully connected subset of vertices, i.e. C ⊆ V
such that C ×C ⊆ E. A maximum clique is a clique in G of
maximum size.

For the (vertex-)weighted version of the problem, we define
a weight w(v) for each vertex v ∈ V . The weight of a
clique is accordingly defined as w(C) =

∑
v∈C w(v). The
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weighted maximum clique problem asks for the clique C ⊆ V
having the largest weight w(C). The QUBO formulation of the
weighted Maximum Clique problem is obtained by modifying
the (unweighted) formulation in [26], resulting in

−
n∑

i=1

w(i) · xi + 2
∑

(i,j)∈E

max{w(i), w(j)} · xixj ,

where xi, xj ∈ {0, 1}. We can convert the above QUBO
formulation into an Ising one using the equivalence given in
[27]. In contrast to the Maximum Cut problem investigated in
Section IV-A, the Maximum Clique formulation as an Ising
model of the form of eq. (1) does contain linear terms. We
thus introduce a slack variable z to homogenize the linear
terms as in eq. (5), and add a new linear term encoding the
initial solution as done in eq. (6).

In the following experiments, we choose the vertex weights
to be positive and randomly drawn in the range (0.001, 1).

1) Setting scaling factors and anneal time: We again focus
first on the HG feature and repeat the tuning of Section IV-A1.
In particular, to determine the two scaling factors α1 for
h(x) and α2 for z, we run Bayesian optimization to fit
both the schedule and the scaling factors simultaneously (see
Section III-E). For this, we fix the anneal time at 1 ms.

Each time the Bayesian optimizer requests a new point,
we return the average maximum clique improvement over the
baseline (using 1000 anneals) for 10 graphs for each density.
If no solutions are found, i.e. z = −1 for all 1000 anneals,
we return a large negative constant (we use −1000) to the
optimizer.

After having obtained the result from the Bayesian opti-
mization run, we fix the best schedule found. After initializing
the Bayesian optimization algorithm with the parameters of the
previous best solution (the previously found scaling constants
α1 and α2 for the fixed schedule), we re-fit α1 and α2 with
the help of the Bayesian optimization.

Figure 7 shows the result of the Bayesian optimization run
with a fixed anneal duration of 1 ms and a graph density of
p = 0.5, as well as our fixed optimized schedule. We see
that the best values for the scaling constants are essentially in
a band around α1 = 0.4 (h-scale), with various maxima for
α2 (z-scale). The precise optimal scaling factors for p = 0.5
returned by the Bayesian optimization are α1 = 0.35 (for
h-scale) and α2 = 0.25 (for z-scale), which we fix for the
remainder of this section.

We repeat this procedure for the other values of p ∈
{0.1, 0.2, . . . , 0.9} as well, and use individual scaling con-
stants for each density in the remainder of this section as done
for the Maximum Cut problem.

After having tuned HG, we now focus again on the
three techniques (RA, HG and RA+HG). Similarly to Sec-
tion IV-A1, we determine a suitable anneal duration for all
three techniques by testing them for the shortest and longest
anneal durations on Erdős–Rényi graphs of varying values of
p ∈ {0, 1, . . . , 0.9}.

Results are displayed in Table II, showing that RA works

Fig. 7. Landscape in α1 (h-scale on the y-axis) and α2 (z-scale on the x-
axis) explored by Bayesian optimization. Graph density for p = 0.5. Top plot
shows mean of Bayesian posterior, bottom one shows variance (uncertainty).

better for larger anneal durations (especially for denser
graphs), and HG works consistently better for lower anneal
durations. We will thus employ RA with an anneal time of
2000 ms in the remainder of this section, and HG with an
anneal time of 1 ms. For RA+HG we fix the anneal duration
at 2000 ms.

2) Schedule computation via Bayesian optimization: The
experiments of the previous sections allowed us to fix the
anneal times, as well as the (density dependent) schedules
and scaling constants for HG, RA, as well as RA+HG. Using
the three calibrated techniques, we evaluate them on graphs
of varying density with respect to the improvement of the
maximum clique weight over the baseline.

Similarly to Figure 5 (left), we also report the best sched-
ules found by the Bayesian optimization in the case of the
Maximum Clique problem. All schedules are optimized to
maximize the maximum clique weight over the baseline (a
standard forward anneal).
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TABLE II
EVALUATION OF RA AND HG, AS WELL AS HYBRID RA+HG, FOR SMALLEST AND LARGEST POSSIBLE ANNEAL TIMES. MAXIMUM CLIQUE DIFFERENCE

ON ERDŐS–RÉNYI GRAPHS FOR DENSITIES RANGING FROM 0.1 TO 0.9.

anneal [ms] 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
RA 100 0.366 0.142 0.031 0.068 -0.309 -0.124 -0.391 -0.364 -0.322
RA 2000 0.481 0.289 -0.041 -0.060 -0.322 -0.171 -0.474 -0.408 -0.309
HG 1 1.195 1.307 1.263 0 0 0 0 0 0
HG 2000 0.908 1.004 1.018 0 0 0 0 0 0
RA+HG 100 0.780 -0.797 -3.874 0.104 0 0.659 0.442 0 0
RA+HG 2000 1.127 0.050 -2.167 0.011 0 0.610 0.309 0.039 0
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Fig. 8. Maximum Clique problem. Best schedules for RA (left), and HG (right) optimized for maximum clique weight. Each line is the best schedule for
one density.

Figure 8 shows the resulting schedules. For RA we see that,
in contrast to the schedules for the Maximum Cut problem, for
low densities the optimal RA schedules decrease the anneal
fraction at the start of the anneal to very small values, and
perform a pause until almost the full anneal time. As the
graph under consideration becomes denser, the anneal fraction
is only decreased down to roughly 0.4, and the pause occurs
in the center having roughly a duration of half the anneal
time. The schedules for HG (Figure 8, right) resemble the
ones observed for the Maximum Cut problem.

Similarly to Figure 3, we again visualize the optimization
of the HG schedule as a heatmap in Figure 9. We see that the
optimal point occurs at roughly position 0.2 (anneal fraction)
and has a HG value of around 1.

3) Comparing RA, HG, and RA+HG: As in Section IV-A3,
we evaluate RA, HG as well as RA+HG after tuning the scal-
ing factors, anneal durations, and schedules. Results are shown
in Figure 10 for 10 new problems not used in the training
set. We observe that the behavior of all three techniques is
consistent: On the new problems, RA performs worst with the
exception of graph density corresponding to p = 0.9. Both HG
and RA+HG perform very similarly and consistently better
than RA, although they draw equal with RA for p = 0.9.

This behavior is different from the equivalent experiment
for Maximum Cut in Figure 4, where both HG and RA+HG
were only marginally better than RA.

V. DISCUSSION

In this contribution we investigated two techniques suitable
to encode an initial solution prior to the anneal on the D-Wave
2000Q quantum annealer. The two techniques are the native
reverse annealing feature of the D-Wave device, as well as our
own method based on the h-gain feature.

Since the two techniques rely on a variety of tuning parame-
ters, we conduct extensive testing to determine suitable anneal
times, parameters, and schedules. Using optimized sets of
parameters we compare both methods on both the Maximum
Cut problem (whose Ising formulation does not have linear
terms, thus making our h-gain technique directly applicable),
as well as the Maximum Clique problem (for which we have
to transform the Ising model first). We summarize our findings
as follows:

1) The anneal durations for RA and HG seem to be
very problem dependent. However, there is a consistent
pattern in the anneal schedules for the two problems we
considered: for graphs of lower density, RA schedules
with an early and longer pause at a low anneal fraction
are advantageous, whereas for higher densities a shorter
pause at an anneal fraction of around 0.5 seems better.
For HG, the optimal schedules are close to the line
connecting (0, 5) and (1, 0) independently of the density.

2) The scaling constants can be found successfully via
Bayesian optimization.
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Fig. 9. Maximum Clique problem. Bayesian optimization landscape for the
HG schedule, visualized as a heatmap for p = 0.5 and anneal time 1 ms. Top
shows maximum clique weight improvement as a function of g(t) ∈ [0, 5]
(see eq. (3)) on the y-axis, where t is the position in the schedule (x-axis).
Bottom shows the variance of the Gaussian processes used by the Bayesian
optimizer.
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Fig. 10. Comparison of RA, HG, and RA+HG with respect to the improve-
ment in maximum clique weight over the baseline. Plot uses the 10 new
problems.

3) In our experiments, the annealer almost always returned
samples with value for the slack variable z = 1 for the
optimized HG schedules. Having z = 1 is necessary for
our technique to work, but we did not expect it to happen
so often. The precise explanation for this observation
is still unknown, but one possible explanation is that
the HG bias helps guiding the anneals towards solutions
with z = 1. We also observe that z = 1 occurs with
much lower frequency for non-optimal HG schedules.

4) We list several RA, HG, and RA+HG schedules for three
optimization problems that other researchers can use
in their codes if they solve problems from the classes
studied here. But after examining all these schedules,
we were not able to discover any patterns to suggest
simpler heuristic algorithms that can be used for finding
good schedules for any new classes of problems, instead
of running expensive optimizations for each new class.
That does not necessarily mean that such heuristics do
not exist, and finding such simpler rules can be an
interesting problem for future research.

5) Overall, we conclude that our technique to plant initial
solutions with the help of the HG feature, as well as
RA+HG, seem to be a viable alternative to reverse
annealing.

This article leaves considerable scope for future work:

1) In this work we only considered RA schedules with
two points defining a pause, and HG schedules with
one point. However, more complicated schedules for
both RA and HG are possible, including other annealing
times, and RA+HG schedules with more points.

2) For the hybrid RA+HG technique, we encoded the same
solution bitstring for both RA and HG. However, this
is not necessary, and it remains to be investigated if
two different initial solutions increase the quality of the
solution after annealing.

3) The technique based on HG we propose to encode an
initial solution (Section III-B) works for both Ising mod-
els without and with linear terms. We exemplarily show
one candidate for each case, Maximum Cut having no
linear terms, and Maximum Clique having linear terms.
However, our HG technique can be applied to many
more interesting problems such as graph partitioning,
the traveling salesman problem, minimum vertex cover,
or graph coloring. Additionally, many of those prob-
lems themselves exist in different variants, including
unweighted, vertex- or edge-weighted formulations.

4) We used the Bayesian optimization framework of [18]
in a rather ad-hoc way. Tuning the parameters of the
Bayesian optimization, in particular with the aim to
make the optimization more robust against the noise in
the D-Wave samples, could further improve the opti-
mized parameters and schedules we report.

5) For cases where z does not always equal 1, one could
observe if the proportion of anneals where z = 1 is
higher for RA+HG in comparison to HG only, assuming
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all other variables are held constant. This is conjectured
to be the case because in RA+HG the value of z is
reinforced by the initial state of RA.

6) It would be interesting to consider iterative applications
of the RA and HG methods where samples from one
iteration are used to bias the annealing in the next one.
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